Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Eur J Immunol ; 53(12): e2350574, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689974

RESUMO

Various regulatory CD8+ T-cell subsets have been proposed for immune tolerance and have been implicated in controlling autoimmune diseases. However, their phenotypic identities and suppression mechanisms are not yet understood. This study found that coculture of T-cell receptor (TCR)- or interferon (IFN)-ß-activated CD8+ T cells significantly suppressed the cytokine production of Th1 and Th17 cells. By experimenting with the experimental autoimmune uveitis (EAU), we found that adoptive transfer of TCR or IFN-ß-activated CD8+ T cells significantly lessened disease development in an IFN-γ-dependent manner with a decreased uveitogenic Th1 and Th17 response. Interestingly, after adoptive transfer into the EAU mice, the IFN-γ+ CD8+ T cells were recruited more efficiently into the secondary lymphoid organs during the disease-priming phase. This recruitment depends on the IFN-γ-inducible chemokine receptor CXCR3; knocking out CXCR3 abolishes the protective effect of CD8+ T cells in EAU. In conclusion, we identified the critical role of IFN-γ for CD8+ T cells to inhibit Th1 and Th17 responses and ameliorate EAU. CXCR3 is necessary to recruit IFN-γ+ CD8+ T cells to the secondary lymphoid organ for the regulation of autoreactive Th1 and Th17 cells.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Retinite , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Retinite/imunologia , Células Th1/imunologia , Células Th17/imunologia , Interferon gama/imunologia , Polaridade Celular/imunologia , Interleucina-10/imunologia , Interferon beta/farmacologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Transporte Proteico/genética , Baço/imunologia
2.
Science ; 381(6657): 515-524, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535729

RESUMO

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Assuntos
Polaridade Celular , Quimiocina CXCL9 , Neoplasias de Cabeça e Pescoço , Macrófagos , Osteopontina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Quimiocina CXCL9/análise , Quimiocina CXCL9/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Macrófagos/imunologia , Osteopontina/análise , Osteopontina/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Polaridade Celular/imunologia
3.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569407

RESUMO

Macrophage polarization is influenced by lipids, which also exert significant control over macrophage functions. Lipids and their metabolites are players in intricate signaling pathways that modulate macrophages' responses to pathogens, phagocytosis, ferroptosis, and inflammation. This review focuses on lipid metabolism and macrophage functions and addresses potential molecular targets for the treatment of macrophage-related diseases. While lipogenesis is crucial for lipid accumulation and phagocytosis in M1 macrophages, M2 macrophages likely rely on fatty acid ß-oxidation to utilize fatty acids as their primary energy source. Cholesterol metabolism, regulated by factors such as SREBPs, PPARs, and LXRs, is associated with the cholesterol efflux capacity and the formation of foam cells (M2-like macrophages). Foam cells, which are targets for atherosclerosis, are associated with an increase in inflammatory cytokines. Lipolysis and fatty acid uptake markers, such as CD36, also contribute to the production of cytokines. Enhancing the immune system through the inhibition of lipid-metabolism-related factors can potentially serve as a targeted approach against tumor cells. Cyclooxygenase inhibitors, which block the conversion of arachidonic acid into various inflammatory mediators, influence macrophage polarization and have generated attention in cancer research.


Assuntos
Polaridade Celular , Inflamação , Metabolismo dos Lipídeos , Macrófagos , Neoplasias , Metabolismo dos Lipídeos/imunologia , Polaridade Celular/imunologia , Inflamação/imunologia , Neoplasias/imunologia , Macrófagos/imunologia , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Ferroptose , Humanos
4.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446007

RESUMO

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Assuntos
Acetamidas , Antagonistas do Receptor A2 de Adenosina , Polaridade Celular , Fatores Quimiotáticos , Nefropatias Diabéticas , Glomérulos Renais , Macrófagos , Purinas , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Fatores Quimiotáticos/antagonistas & inibidores , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Receptor A2B de Adenosina , Acetamidas/farmacologia , Purinas/farmacologia , Animais , Ratos , Movimento Celular/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética
5.
FEBS J ; 289(2): 417-435, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34355516

RESUMO

Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.


Assuntos
Vesículas Extracelulares/genética , Inflamação/genética , Sepse/genética , Sindecana-2/genética , Animais , Polaridade Celular/genética , Polaridade Celular/imunologia , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/microbiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica , Humanos , Imunidade/genética , Inflamação/microbiologia , Inflamação/patologia , Inflamação/terapia , Macrófagos/imunologia , Macrófagos/microbiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Comunicação Parácrina/genética , Fagocitose/genética , Sepse/microbiologia , Sepse/patologia , Sepse/terapia
6.
Front Immunol ; 12: 647894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262560

RESUMO

Acute graft-versus-host disease (aGVHD) is a lethal complication after allogeneic hematopoietic stem cell transplantation. The mechanism involves the recognition of host antigens by donor-derived T cells which induces augmented response of alloreactive T cells. In this study, we characterized the role of a previously identified novel classical secretory protein with antitumor function-LYG1 (Lysozyme G-like 1), in aGVHD. LYG1 deficiency reduced the activation of CD4+ T cells and Th1 ratio, but increased Treg ratio in vitro by MLR assay. By using major MHC mismatched aGVHD model, LYG1 deficiency in donor T cells or CD4+ T cells attenuated aGVHD severity, inhibited CD4+ T cells activation and IFN-γ expression, promoted FoxP3 expression, suppressed CXCL9 and CXCL10 expression, restrained allogeneic CD4+ T cells infiltrating in target organs. The function of LYG1 in aGVHD was also confirmed using haploidentical transplant model. Furthermore, administration of recombinant human LYG1 protein intraperitoneally aggravated aGVHD by promoting IFN-γ production and inhibiting FoxP3 expression. The effect of rhLYG1 could partially be abrogated with the absence of IFN-γ. Furthermore, LYG1 deficiency in donor T cells preserved graft-versus-tumor response. In summary, our results indicate LYG1 regulates aGVHD by the alloreactivity of CD4+ T cells and the balance of Th1 and Treg differentiation of allogeneic CD4+ T cells, targeting LYG1 maybe a novel therapeutic strategy for preventing aGVHD.


Assuntos
Aloenxertos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Efeito Enxerto vs Tumor/imunologia , Muramidase/deficiência , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Polaridade Celular/genética , Polaridade Celular/imunologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/genética , Efeito Enxerto vs Tumor/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muramidase/genética , Proteínas Recombinantes/administração & dosagem , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Transplante Homólogo/métodos
7.
Semin Cell Dev Biol ; 120: 3-9, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34274213

RESUMO

The development of complex forms of multicellular organisms depends on the spatial arrangement of cellular architecture and functions. The interior design of the cell is patterned by spatially biased distributions of molecules and biochemical reactions in the cytoplasm and/or on the plasma membrane. In recent years, a dynamic change in the cytoplasmic fluid flow has emerged as a key physical process of driving long-range transport of molecules to particular destinations within the cell. Here, recent experimental advances in the understanding of the generation of the various types of cytoplasmic flows and contributions to intracellular patterning are reviewed with a particular focus on feedback mechanisms between the mechanical properties of fluid flow and biochemical signaling during animal cell polarization.


Assuntos
Polaridade Celular/imunologia , Citoplasma/metabolismo , Humanos , Transdução de Sinais
8.
J Mol Cell Cardiol ; 160: 87-96, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34293342

RESUMO

While largely appreciated for their antimicrobial and repair functions, macrophages have emerged as indispensable for the development, homeostasis, and regeneration of tissue, including regeneration of the neonatal heart. Upon activation, mammalian neonatal macrophages express and secrete factors that coordinate angiogenesis, resolution of inflammation, and ultimately cardiomyocyte proliferation. This is contrary to adult macrophages in the adult heart, which are incapable of inducing significant levels of cardiac regeneration. The underlying mechanisms by which pro-regenerative macrophages are activated and regulated remain vague. A timely hypothesis is that macrophage metabolism contributes to this proliferative and regenerative potential. This is because we now appreciate the significant contributions of metabolites to immune cell programming and function, beyond solely bioenergetics. After birth, the metabolic milieu of the neonate is subject to significant alterations in oxygenation and nutrient supply, which will affect how metabolic substrates are catabolized. In this context, we discuss potential roles for select macrophage metabolic pathways during cardiac regeneration.


Assuntos
Polaridade Celular/imunologia , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração/imunologia , Transdução de Sinais/imunologia , Adulto , Animais , Animais Recém-Nascidos , Comunicação Celular/imunologia , Criança , Fibroblastos/metabolismo , Humanos , Recém-Nascido , Macrófagos/imunologia , Infarto do Miocárdio/imunologia
9.
Indian J Tuberc ; 68(3): 340-349, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34099199

RESUMO

BACKGROUND: Tuberculosis is a chronic infection caused by Mycobacterium tuberculosis (M.tb), which needs proper macrophage activation for control. It has been debated whether the co-infection with helminth will affect the immune response to mycobacterial infection. OBJECTIVE: To determine the effect of sequential co-infection of Heligmosomoides polygyrus (H.pg) nematodes and M.tb on T cell responses, macrophages polarization and lung histopathological changes. METHOD: This study used 49 mice divided into 7 treatment groups, with different sequence of infection of M.tb via inhalation and H.pg via oral ingestion for 8 and 16 weeks. T cells response in the lung, intestine, and peripheral blood were determined by flow cytometry. Cytokines (IL-4, IFN-γ, TGB-ß1, and IL-10) were measured in peripheral blood using ELISA. Lung macrophage polarization were determined by the expression of iNOS (M1) or Arginase 1 (M2). Mycobacterial count were done in lung tissue. Lung histopathology were measured using Dorman's semiquantitative score assessing peribronchiolitis, perivasculitis, alveolitis, and granuloma formation. RESULT: M.tb infection induced Th1 response and M1 macrophage polarization, while H.pg infection induced Th2 and M2 polarization. In sequential co-infection, the final polarization of macrophage was dictated by the sequence of co-infection. However, all groups with M.tb infection showed the same degree of mycobacterial count in lung tissues and lung tissue histopathological changes. CONCLUSION: Sequential co-infection of H.pg and M.tb induces different T cell response which leads to different macrophage polarization in lung tissue. Helminth infection induced M2 lung macrophage polarization, but did not cause different mycobacterial count nor lung histopathological changes.


Assuntos
Pulmão , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Nematospiroides dubius/imunologia , Infecções por Strongylida , Tuberculose , Animais , Contagem de Células , Polaridade Celular/imunologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Citocinas/sangue , Modelos Animais de Doenças , Imunidade Celular , Pulmão/imunologia , Pulmão/patologia , Camundongos , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Linfócitos T/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
10.
Cell Rep ; 35(5): 109072, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951426

RESUMO

Visualizing mRNA in real time in vivo at high resolution is critical for a full understanding of the spatiotemporal dynamics of gene regulation and function. Here, using a PP7/PCP-based mRNA-tagging approach, we construct a collection of tissue-specific and differentially expressed toolkit strains for visualizing mRNAs encoding apical, basolateral, and junctional proteins in Caenorhabditis elegans epithelia. We precisely delineate the spatiotemporal organization and dynamics of these transcripts across multiple subcellular compartments and tissues. Remarkably, all the transcripts exhibit an asymmetric, membrane-associated localization during epithelial polarization and maturation, which suggests that mRNA localization is a prerequisite for epithelial polarization and function. Single-particle tracking reveals striking features of the transport dynamics of the mRNAs in a gene-specific, compartment-linked, and time-resolved manner. The toolkit can be used to identify the cis-regulatory elements and trans-acting factors for mRNA localization. This study provides a valuable resource to investigate complex RNA dynamics in epithelial polarity and morphogenesis.


Assuntos
Caenorhabditis elegans/metabolismo , Polaridade Celular/imunologia , Células Epiteliais/metabolismo , Animais , Camundongos , Camundongos Transgênicos
12.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669239

RESUMO

Irregular inflammatory responses are a major contributor to tissue dysfunction and inefficient repair. Skin has proven to be a powerful model to study mechanisms that regulate inflammation. In particular, skin wound healing is dependent on a rapid, robust immune response and subsequent dampening of inflammatory signaling. While injury-induced inflammation has historically been attributed to keratinocytes and immune cells, a vast body of evidence supports the ability of non-immune cells to coordinate inflammation in numerous tissues and diseases. In this review, we concentrate on the active participation of tissue-resident adipocytes and fibroblasts in pro-inflammatory signaling after injury, and how altered cellular communication from these cells can contribute to irregular inflammation associated with aberrant wound healing. Furthering our understanding of how tissue-resident mesenchymal cells contribute to inflammation will likely reveal new targets that can be manipulated to regulate inflammation and repair.


Assuntos
Adipócitos Brancos/imunologia , Derme/citologia , Derme/lesões , Fibroblastos/imunologia , Cicatrização/imunologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Comunicação Celular/imunologia , Polaridade Celular/imunologia , Citocinas/metabolismo , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/imunologia
13.
Cell Rep ; 34(11): 108861, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730591

RESUMO

T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells. Using mice deficient in pMHC uptake by T cells, we show that T-T antigen presentation is important for the development of experimental autoimmune encephalitis and Th17 cell differentiation in vivo. By varying the professional APC:T cell ratio, we can modulate Treg versus Th17 differentiation in vitro and in vivo, suggesting that T-T antigen presentation underlies proinflammatory responses in conditions of antigen scarcity.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/metabolismo , Polaridade Celular/imunologia , Células Th17/imunologia , Animais , Antígenos CD28/metabolismo , Diferenciação Celular/imunologia , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica , Genoma , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Transcrição Gênica , Trogocitose , Proteínas rho de Ligação ao GTP/deficiência , Proteínas rho de Ligação ao GTP/metabolismo
14.
Cell Mol Biol Lett ; 26(1): 7, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622250

RESUMO

BACKGROUND: NOTCH signaling has been shown to play a role in the production of interleukin-22 (IL-22) by CD4+ T cells. Multiple T-helper (Th) cell populations secrete IL-22. Th22 (CD4+IL22+IFNγ-IL17A-) cells are a subgroup of CD4+ effector T cells that primarily generate IL-22. The regulatory mechanisms of the NOTCH signaling pathway involved in differentiation of the Th22 cell subset have not been completely elucidated. This study aimed to further explore the involvement of NOTCH signaling in Th22 differentiation. METHODS: In vitro combination of IL-6, IL-23, and tumor necrosis factor-α (TNF-α) treatment with naïve CD4+ T cells established the Th22 cell induced model. NOTCH signaling was activated by jagged-1 and inhibited by (2S)-N-[(3,5-difluorophenyl) acetyl]-L-alanyl-2-phenyl]glycine 1,1-dimethylethyl ester (DAPT). HES-1 siRNA and HES-1 vector were employed to knock down and induce overexpression of HES-1 to investigate the effect of NOTCH signaling on the differentiation of CD4+T cells into Th22 cells. RESULTS: We observed that the proportion of Th22 cells, along with Hes-1, Ahr, and Il-22 mRNA and protein expression, was increased by both jagged-1 and overexpression of HES-1. On the other hand, after the combined cytokine treatment of cells, and exposure to jagged-1 and DAPT or HES-1 siRNA, there was a decrease in the Th22 cell proportion, mRNA and protein expression of HES-1, AHR, and IL-22. CONCLUSIONS: Our study demonstrates that HES-1 enhancement in AHR and IL-22 up-regulation of NOTCH signaling can promote the skewing of naïve CD4+T cells toward Th22 cells. Also, the results of our study show that HES-1 is a crucial factor in Th22 cell differentiation.


Assuntos
Diferenciação Celular/imunologia , Interleucinas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/citologia , Fatores de Transcrição HES-1/metabolismo , Animais , Polaridade Celular/imunologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos
15.
Front Immunol ; 12: 734008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987500

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease that attacks almost every organ. The condition mostly happens to adults but is also found in children, and the latter have the most severe manifestations. Among adults, females, especially non-Caucasian, are mostly affected. Even if the etiology of SLE remains unclear, studies show a close relation between this disease and both genetics and environment. Despite the large number of published articles about SLE, we still do not have a clear picture of its pathogenesis, and no specific drug has been found to treat this condition effectively. The implication of macrophages in SLE development is gaining ground, and studying it could answer these gaps. Indeed, both in vivo and in vitro studies increasingly report a strong link between this disease and macrophages. Hence, this review aims to explore the role of macrophages polarization and plasticity in SLE development. Understanding this role is of paramount importance because in-depth knowledge of the connection between macrophages and this systemic disease could clarify its pathogenesis and provide a foundation for macrophage-centered therapeutic approaches.


Assuntos
Plasticidade Celular/imunologia , Polaridade Celular/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Adulto , Animais , Criança , Feminino , Humanos , Masculino , Fatores Sexuais
16.
J Leukoc Biol ; 109(6): 1139-1146, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33020969

RESUMO

After successful cardiopulmonary resuscitation (CPR), many patients show signs of an overactive immune activation. Monocytes are a heterogeneous cell population that can be distinguished into 3 subsets by flow cytometry (classical monocytes [CM: CD14++ CD16- ], intermediate monocytes [IM: CD14++ CD16+ CCR2+ ] and non-classical monocytes [NCM: CD14+ CD16++ CCR2- ]). Fifty-three patients admitted to the medical intensive care unit (ICU) after cardiac arrest were included. Blood was taken on admission and after 72 h. The primary endpoint of this study was survival at 6 months and the secondary endpoint was neurological outcome as determined by cerebral performance category (CPC)-score at 6 months. Median age was 64.5 (49.8-74.3) years and 75.5% were male. Six-month mortality was 50.9% and survival with good neurological outcome was 37.7%. Monocyte subset distribution upon admission to the ICU did not differ according to survival. Seventy-two hours after admission, patients who died within 6 months showed a higher percentage of the pro-inflammatory subset of IM (8.3% [3.8-14.6]% vs. 4.1% [1.5-8.2]%; P = 0.025), and a lower percentage of CM (87.5% [79.9-89.0]% vs. 90.8% [85.9-92.7]%; P = 0.036) as compared to survivors. In addition, IM were predictive of outcome independent of time to ROSC and witnessed cardiac arrest, and correlated with CPC-score at 6 months (R = 0.32; P = 0.043). These findings suggest a possible role of the innate immune system in the pathophysiology of post cardiac arrest syndrome.


Assuntos
Biomarcadores , Polaridade Celular/imunologia , Parada Cardíaca/mortalidade , Monócitos/imunologia , Monócitos/metabolismo , Idoso , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Parada Cardíaca/etiologia , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais
17.
Mol Immunol ; 130: 113-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33308900

RESUMO

Macrophages are the most abundant cells in tumor stroma and their polarization within tumor microenvironment exert the key roles in tumorigenesis. Astragaloside IV is a natural extract from traditional Chinese herbal Radix Astragali, and fulfills pleiotropic function in several cancers. Nevertheless, its function in ovarian cancer microenvironment remains elusive. In the present research, astragaloside IV exhibited little cytotoxicity within a certain dose range in THP-1 cells. Moreover, astragaloside IV suppressed the ratio of CD14+CD206+ cells in IL-4/IL-13-treated THP-1 macrophages and transcripts of M2 macrophage markers (including CD206, CCL24, PPARγ, Arg-1, IL-10), indicating the inhibitory effects of astragaloside IV on IL-4/IL-13-induced macrophage M2 polarization. Intriguingly, astragaloside IV antagonized M2 macrophages coculture-evoked cell proliferation, invasion and migration in ovarian cancer cells. During this process, administration with astragaloside IV restrained the high expression of high-mobility group box1 (HMGB1) and TLR4 in macrophages co-cultured with ovarian cancer cells, concomitant with decreases in release of M2 marker TGF-ß, MMP-9 and IL-10. Moreover, targeting the HMGB1 signaling reversed M2 macrophages-induced ovarian cancer cell proliferation, invasion and migration. Noticeably, exogenous HMGB1 overturned the inhibitory efficacy of astragaloside IV against macrophage M2 polarization-evoked malignant potential in ovarian cancer cells. Together, these findings suggest that astragaloside IV may protect against M2 macrophages-evoked malignancy in ovarian cancer cells by suppressing the HMGB1-TLR4 signaling. Therefore, astragaloside may alleviate the progression of ovarian cancer by regulating macrophage M2 polarization within tumor microenvironment, implying a promising therapeutic strategy against ovarian cancer.


Assuntos
Polaridade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Saponinas/farmacologia , Triterpenos/farmacologia , Movimento Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Progressão da Doença , Feminino , Proteína HMGB1/metabolismo , Humanos , Macrófagos/fisiologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
18.
Front Immunol ; 11: 565431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312170

RESUMO

Asthma is a chronic airway disease often due to sensitization to aeroallergens, especially house dust mite allergens (HDMs). The Dermatophagoides pteronyssinus group 2 (Der p 2), is one of the most representative HDM allergens and is recognized by more than 90% of HDM-allergic patients. In mouse models, all asthma-related features can be prevented by prophylactic administration of Dermatophagoides pteronyssinus 2-derived peptide (Der p 2.1). However, it is unknown whether it is able to treat well-established asthma in mice and humans. We aimed here to evaluate the efficacy of Der p 2.1 immunotherapy in a mouse, humanized mouse, and asthmatic patients. Asthma related-features were analyzed through airway hyperresponsiveness (AHR), allergen-specific IgE, and lung histology in mice and humanized mice. Immune profile was analyzed using lung and blood from mice and severe asthmatic patients respectively. T cell and dendritic cell (DC) polarization was evaluated using co-culture of bone marrow derived cells (BMDCs) and naïve T cell from naïve mice. Mice and humanized mice both have a reduced AHR, lung tissue alteration, and HDM-specific IgE under Der p 2.1 treatment. Concerning the immune profile, T helper 2 cells (Th2) and T helper 17 cells (Th17) were significantly reduced in both mice and humanized mice lung and in peripheral blood mononuclear cells (PBMCs) from severe asthmatic patients after Der p 2.1 incubation. The downregulation of T cell polarization seems to be linked to an increase of IL-10-secreting DC under Der p 2.1 treatment in both mice and severe asthmatic patients. This study shows that allergen-derived peptide immunotherapy abrogates asthma-related features in mice and humanized mice by reducing Th2 and Th17 cells polarization via IL-10-secreting DC. These results suggest that Der p 2.1 peptide immunotherapy could be a promising approach to treat both Th2 and Th17 immunity in asthma.


Assuntos
Antígenos de Dermatophagoides/química , Proteínas de Artrópodes/química , Asma/terapia , Polaridade Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Dessensibilização Imunológica/métodos , Peptídeos/administração & dosagem , Pyroglyphidae/imunologia , Células Th17/imunologia , Células Th2/imunologia , Adulto , Animais , Asma/sangue , Asma/imunologia , Polaridade Celular/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
19.
Immunohorizons ; 4(10): 659-669, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077427

RESUMO

Macrophages reprogram their metabolism to promote appropriate responses. Proresolving macrophages primarily use fatty acid oxidation as an energy source. Metabolites generated during the catabolism of fatty acids aid in the resolution of inflammation and tissue repair, but the regulatory mechanisms that control lipid metabolism in macrophages are not fully elucidated. Lipin-1, a phosphatidic acid phosphatase that has transcriptional coregulator activity, regulates lipid metabolism in a variety of cells. In this current study, we show that lipin-1 is required for increased oxidative phosphorylation in IL-4 stimulated mouse (Mus musculus) macrophages. We also show that the transcriptional coregulatory function of lipin-1 is required for ß-oxidation in response to palmitate (free fatty acid) and apoptotic cell (human) stimulation. Mouse bone marrow-derived macrophages lacking lipin-1 have a reduction in critical TCA cycle metabolites following IL-4 stimulation, suggesting a break in the TCA cycle that is supportive of lipid synthesis rather than lipid catabolism. Together, our data demonstrate that lipin-1 regulates cellular metabolism in macrophages in response to proresolving stimuli and highlights the importance of aligning macrophage metabolism with macrophage phenotype.


Assuntos
Polaridade Celular/genética , Interleucina-4/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Fosfatidato Fosfatase/metabolismo , Animais , Polaridade Celular/imunologia , Células Cultivadas , Expressão Gênica , Técnicas de Inativação de Genes , Inflamação/genética , Inflamação/imunologia , Interleucina-4/genética , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidato Fosfatase/genética , Cicatrização/genética , Cicatrização/imunologia
20.
Anticancer Res ; 40(11): 6473-6484, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33109586

RESUMO

BACKGROUND/AIM: Glioblastoma multiforme (GBM) is an intractable tumor that has a very poor prognosis despite intensive treatment with temozolomide plus radiotherapy. PATIENTS AND METHODS: Sixteen newly diagnosed patients with high-grade gliomas were enrolled in a phase II study of the α-type-1 DC vaccine. Briefly, DCs obtained from the culture of enriched monocytes in the presence of a cytokine cocktail, were pulsed with a cocktail of 5 synthetic peptides and cryopreserved until injection into patients. RESULTS: The amount of IL-12 produced by activated DCs was higher than that previously reported. Among 15 evaluable patients, 10 showed positive CTL responses to any peptides in an ELISPOT assay. After 6 years of observation, five patients were still alive, and two of these patients were relapse-free. Moreover, a significant survival-prolonging effect was verified in DC-treated glioma patients. CONCLUSION: Peptide-cocktail-pulsed α-type-1 DC vaccines have a potential therapeutic effect on survival when used in combination with the standard regimen, which is partly based on IL-12-IFN-γ-mediated T-cell activation.


Assuntos
Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Glioma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Vacinas Anticâncer/imunologia , Polaridade Celular/imunologia , Intervalo Livre de Doença , Feminino , Glioma/imunologia , Glioma/patologia , Humanos , Interferon gama/genética , Interleucina-12/genética , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Linfócitos T/imunologia , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...